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Graph transduction is a popular class of semisupervised learning tech-
niques that aims to estimate a classification function defined over a graph
of labeled and unlabeled data points. The general idea is to propagate
the provided label information to unlabeled nodes in a consistent way. In
contrast to the traditional view, in which the process of label propagation
is defined as a graph Laplacian regularization, this article proposes a rad-
ically different perspective, based on game-theoretic notions. Within the
proposed framework, the transduction problem is formulated in terms
of a noncooperative multiplayer game whereby equilibria correspond to
consistent labelings of the data. An attractive feature of this formulation
is that it is inherently a multiclass approach and imposes no constraint
whatsoever on the structure of the pairwise similarity matrix, being able
to naturally deal with asymmetric and negative similarities alike. Experi-
ments on a number of real-world problems demonstrate that the proposed
approach performs well compared with state-of-the-art algorithms, and
it can deal effectively with various types of similarity relations.

1 Introduction

In the machine learning community, semisupervised learning (SSL) has
gained considerable popularity over the past decade (Chapelle, Schölkopf,
& Zien, 2006; Zhu, 2005), and within the existing paradigms, graph-based
approaches to SSL, namely, the graph transduction methods, constitute an
important class of algorithms. These methods model the geometry of the
data as a graph with nodes corresponding to the labeled and unlabeled
points and edges being weighted by the similarity between the points;
they then try to estimate the labels of unlabeled points by propagating the
coarse information available at the labeled nodes to the unlabeled ones.
Performing this propagation in a consistent way relies on a common a
priori assumption known as the cluster assumption (Zhou, Bousquet, Lal,
Weston, & Schölkopf, 2004; Chapelle et al., 2006), which is reminiscent of the
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homophily principle used in social network analysis (Easley & Kleinberg,
2010). The assumption simply states that (1) points that are close to each
other are expected to have the same label and (2) points in the same cluster
(or on the same manifold) are expected to have the same label. Building
on this assumption, traditional graph-based approaches formalize graph
transduction as a regularized function estimation problem on an undirected
graph (Joachims, 2003; Zhu, Ghahramani, & Lafferty, 2003; Zhou et al., 2004).

This letter presents a novel game-theoretic perspective to the problem of
graph transduction. Specifically, graph transduction is formulated in terms
of a multiplayer noncooperative game where the players are the data points
that take part in the game to decide their class memberships. In this setting,
while the strategies played by the labeled points are already decided at the
outset, because each of them knows which class it belongs to, the possible
strategies available to unlabeled points are the whole set of hypotheses of
being a member of one of the available classes. Within this formulation, the
well-known Nash equilibrium concept for noncooperative games provides
a well-founded way of consistent labeling for the unlabeled points.

The game-theoretic interpretation presented here is appealing for a num-
ber of reasons. To begin with, it is intrinsically a multiclass approach. But
more importantly, it can cope with both asymmetric and negative similari-
ties. Since the seminal work of Tversky (1977), a large body of psycholog-
ical studies suggests that human similarity judgments are nonmetric (in
particular, asymmetric). Nonmetric similarities or dissimilarities also arise
naturally in many practical applications, like comparing shapes (Jacobs,
Weinshall, & Gdalyahu, 2000) and protein sequences (Meila & Pentney,
2007). Common examples include the directed Hausdorff distance between
sets, the Kullback-Leiber divergence between probability distributions, and
Tversky’s contrast model (Tversky, 1977; Santini & Jain, 1999). Nonmetri-
city has been largely regarded as an artifact of poor choice of features or
algorithms. Note, however, that it has been shown that nonmetricity is
sometimes essential to the nature of the problem, and rendering the simi-
larities metric may destroy relevant information (Laub, Roth, Buhmann, &
Müller, 2006).

The organization of the letter is as follows. Section 2 shows that trans-
duction on an unweighted undirected graph can be formulated as a binary
constraint satisfaction problem, which provides the motivation for the pro-
posed approach. Section 3 briefly reviews some basic notions of noncoop-
erative game theory. Next, section 4 extends our analysis to the general
case of transduction on weighted (directed) graphs, where graph transduc-
tion is formalized as a noncooperative game using the connection between
so-called relaxation labeling processes and game theory (Miller & Zucker,
1991). Section 5 investigates the loose relation between the proposed game-
theoretic formulation and the traditional energy-based formulations. Sec-
tion 6 reports experimental results on a number of real-world classification
problems. Section 7 concludes.
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Figure 1: Transductive learning on an unweighted undirected graph. (a) An
unweighted undirected graph describing the similarity relationships among the
points. Two nodes of the graph are marked with different labels, respectively
represented by a square and a triangle. (b) The consistent labeling of points
satisfying the constraints based on the cluster assumption of SSL.

2 Transductive Learning on Unweighted Undirected Graphs

The theoretical motivation for the proposed approach stems from analysis
of the simplest case of graph transduction where the graph expressing the
similarity relationships among the data points is an unweighted undirected
graph. To give an example, the graph can be seen as a k-nearest neighbor
(k-NN) graph with 0/1 weights over points in which the presence of an edge
simply denotes the perfect similarity between a pair of two data points; oth-
erwise, the points are completely dissimilar. To illustrate this toy problem,
consider the graph shown in Figure 1 in which edges are unweighted. The
classification task is to estimate the labels of the unlabeled points based
exclusively on the information available at the two labeled points, each
marked with a different label. Recall the cluster assumption of semisuper-
vised learning that neighboring objects and objects in the same cluster (or
on the same manifold structure) tend to belong to the same class. Clearly,
in the unweighted graph setting, the cluster assumption is also valid and
can be expressed as the hypothesis that every node in a connected compo-
nent of a binary similarity graph has the same class label as each connected
component describes a manifold.

Following this observation, we can formulate this toy version of graph
transduction as a (binary) constraint satisfaction problem (CSP) (Tsang,
1993; Marriott & Stuckey, 1998). CSPs are widely used to solve combi-
natorial problems in a variety of application domains, such as artificial
intelligence and computer vision. In the computer vision literature, the
problem is often known as the consistent labeling problem (Waltz, 1975;
Haralick & Shapiro, 1979).

A binary CSP is defined by a set of variables representing the elements
of the problem being modeled and a set of binary constraints representing
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the relationships among variables. A solution of the problem is simply an
assignment of values to the variables, which satisfies all the constraints.
If there is no such assignment, the problem is unsatisfiable. When each
variable can take a value from a finite domain, a binary CSP can be described
in a formal manner as a triple (V, D, R), where V = {v1, . . . , vn} is a set of
variables; D = {Dv1

, . . . , Dvn
} is a set of domains of the variables, each Dvi

denoting a finite set of possible values for variable vi; and R = {Ri j | Ri j ⊆
Dvi

× Dv j
} is a set of binary constraints, each Rij describing compatible pairs

of values for the variables vi and v j. If the cardinalities of the domains of
variables are p and q, respectively, then Rij can be expressed by a 0/1 matrix
of size p × q, where Ri j(λ, λ′) = 1 if the assignment vi = λ is compatible with
the assignment v j = λ′. For a general CSP on a finite domain, the problem of
finding a solution is known to be NP-complete (Haralick, Davis, Rosenfeld,
& Milgram, 1978). The simplest way to obtain an assignment satisfying
all the given constraints or to report nonexistence of such a solution is to
perform backtracking. However, it is time-consuming, so in practice, either
a constraint propagation technique or a local search method is used to solve
the problem (Tsang, 1993; Marriott & Stuckey, 1998).

Returning back to the motivating problem of transductive learning on
an unweighted undirected graph, suppose that we are given a data set D =
{D�,Du} consisting of labeled points D� = {d1, . . . , d�} and unlabeled points
Du = {d�+1, . . . , dn} and a set of labels � = {1, . . . , c} such that the labels pro-
vided for the first � labeled points are given by {φ1, . . . , φ�} ∈ �. The task
of transductive learning is to estimate the unknown labels {φ�+1, . . . , φn}
of unlabeled points {d�+1, . . . , dn}. Now further suppose that the relation-
ships among the data points are given by an unweighted, undirected graph
G = (D, E ), where D is the set of nodes and E is the set of edges such that an
edge ei j ∈ E shows that points i and j are perfectly similar to each other. Let
A = (ai j) denote the 0/1 adjacency matrix ofG. Reflecting the constraints im-
posed by the cluster assumption of SSL, the problem of graph transduction
on an unweighted graph can be formalized as a binary CSP as follows:

� The set of variables: V = {v1, . . . , vn}

� Domains: Dvi
=

{ {φi}, for all 1 ≤ i ≤ �

� for all � + 1 ≤ i ≤ n

� Binary constraints: ∀i j : if ai j = 1, then vi = v j—for a two-class prob-

lem, for example Ri j =
[

1 0

0 1

]
.

Each assignment of values to the variables satisfying all the constraints is
a solution of the CSP and provides a consistent labeling for the unlabeled
points.
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Table 1: Payoff Matrix of the Rock-Paper-Scissors Game.

rock paper scissors

rock (0, 0) (−1, 1) (1, −1)
paper (1, −1) (0, 0) (−1, 1)
scissors (−1, 1) (1, −1) (0, 0)

Classical CSPs such as the one given in this section assume crisp con-
straints, in the sense that constraints are either completely satisfied or
completely violated. However, for many real-world applications, such a
formulation is too restrictive to be practical. A classical generalization to
deal with soft constraints is described in Hummel and Zucker (1983), in
which each constraint is assigned a weight representing a level of confi-
dence. Later, it was shown that the notion of consistency they proposed
is related to the Nash equilibrium concept in noncooperative game theory
(Miller & Zucker, 1991). In this study, we build on this connection to devise
a graph transduction game, which serves as a generalization of the binary
CSP for the motivating problem. For completeness, we next provide an
overview of some basic notions from noncooperative game theory (Nash,
1951).

3 Noncooperative Games and Nash Equilibria

Noncooperative game theory deals with models of strategic interactions
(games) among anonymous agents (players), where the goal of each player
is to maximize its own utility or payoff. Each player has a set of possible
actions (pure strategies) to play, called the pure strategy set, and receives
a payoff based on its own choice and those of the other players. In the
definitions below, we restrict ourselves to multiplayer games expressed in
normal form and follow the notations used in Weibull (1995).

In normal form, a game with many players can be expressed as a
triple G = (I, S, π ), where I = {1, . . . , n}, with n ≥ 2, is the set of play-
ers, S = ×i∈ISi is the joint strategy space defined as the Cartesian product
of the individual pure strategy sets Si = {1, . . . , mi}, and π : S → R

n is the
combined payoff function, which assigns a real valued payoff πi(s) ∈ R to
each pure strategy profile s ∈ S and player i ∈ I. In the case of two players,
payoff functions can be represented as two m1 × m2 matrices. To illustrate,
consider the well-known rock-paper-scissors game, a two-player game in
which each player has three possible strategies, Si = {rock, paper, scissors},
for each i = 1, 2. Both players simultaneously choose a strategy and con-
sequently receive a payoff based on their actions with respect to the rules
“rock beats scissors,” “scissors beats paper,” and “paper beats rock.” The
payoff matrix of the game is given in Table 1 in which player 1 is the row
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player and player 2 is the column player. For example, if player 1 plays rock
and player 2 plays paper, player 1 loses the game, that is, receives a payoff
of −1, and player 2 wins the game, that is, receives a payoff of 1.

A mixed strategy of player i ∈ I is a probability distribution over its pure
strategy set Si, which can be described as the vector xi = (xi1, . . . , ximi

)T such
that each component xih denotes the probability that the player chooses
to play its hth pure strategy among all the available strategies. Mixed
strategies for each player i ∈ I are constrained to lie in the standard simplex
of the mi-dimensional Euclidean space R

mi :

�i =
{

xi ∈ R
mi :

mi∑
h=1

xih = 1, and xih ≥ 0 for all h

}
.

Accordingly, a mixed strategy profile x = (
x1, . . . , xn

)
is defined as a vector

of mixed strategies, each xi ∈ �i representing the mixed strategy assigned
to player i ∈ I, and each mixed strategy profile lives in the mixed strategy
space of the game, given by the Cartesian product

� = ×i∈I�i. (3.1)

For simplicity, let z = (xi, y−i) ∈ � denote the strategy profile where
player i plays strategy xi ∈ �i whereas the other players j ∈ I \ {i} play
based on the strategy profile y ∈ �, that is, zi = xi and z j = y j for all j 
= i.
The expected value of the payoff that player i obtains can be determined by
a weighted sum for any i, j ∈ I (when all the other players’ strategies are
kept fixed) as

ui(x) =
∑
s∈S

x(s)πi(s) =
m j∑

k=1

ui

(
ek

j, x− j

)
x jk, (3.2)

where ui(e
k
j, x− j) denotes the payoff that player i receives when player

j adopts its kth pure strategy, and ek
j ∈ � j stands for the extreme mixed

strategy corresponding to the vector of length mj whose components are all
zero except the kth one, which is equal to one. Note that for player j, playing
its kth pure strategy is probabilistically equivalent to playing the extreme
mixed strategy ek

j.
The mixed best replies for player i against a mixed strategy y ∈ �, de-

noted by βi(y), are the set of mixed strategies such that no mixed strategy
other than the ones included in this set gives a higher payoff to player i
against strategy y:

βi(y) = {
xi ∈ �i : ui

(
xi, y−i

) ≥ ui

(
zi, y−i

) ∀zi ∈ �i

}
.
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Subsequently, the combined mixed best replies is defined as the Cartesian
product of the best replies of all the players β(y) = ×i∈Iβi(y) ⊂ �.

Definition 1. A mixed strategy x∗ = (x∗
1, . . . , x∗

n) is said to be a Nash equilib-
rium if it is the best reply to itself, x∗ ∈ β(x∗), that is

ui(x
∗
i , x∗

−i) ≥ ui(xi, x∗
−i) (3.3)

for all i ∈ I, xi ∈ �i, and xi 
= x∗
i . Furthermore, a Nash equilibrium x∗ is called

strict if each x∗
i is the unique best reply to x∗, β(x∗) = {x∗}.

Nash equilibrium constitutes the key concept of game theory. It is moti-
vated by the idea that a theory of rational decision making should not be a
self-destroying prophecy that creates an incentive to deviate for those who
believe it. Indeed, the notion itself is a stability condition, which states that
no player can obtain a higher payoff by changing unilaterally its own strat-
egy once such an equilibrium state is reached. Note that not all games have
a Nash equilibrium in pure strategies (e.g., the rock-paper-scissors game),
but a fundamental result of game theory states that any normal-form game
has at least one mixed Nash equilibrium (Nash, 1951). For example, the
rock-paper-scissors game has a (unique) mixed Nash equilibrium that corre-
sponds to the case where each player picks a strategy uniformly at random:
xi = (1/3, 1/3, 1/3) for each i = 1, 2. The algorithmic issue of computing a
Nash equilibrium is discussed in section 4.2.

4 The Graph Transduction Game (GTG)

Consider the following graph transduction game (GTC). Assume each
player i ∈ I participating in the game corresponds to a particular point
in a data set D = {d1, . . . , dn} and can choose a strategy among the set
of strategies Si = {1, . . . , c}, each expressing a certain hypothesis about its
membership in a class and c being the total number of classes. Hence, the
mixed strategy profile of each player i ∈ I lies in the c-dimensional simplex
�i. By problem definition, the players of the game can be categorized into
two disjoint groups: those that already have knowledge of their member-
ship, referred to as labeled players and denoted with the symbol I�, and
those that do not have any idea about this at the beginning of the game,
which are hence called unlabeled players and correspondingly denoted
with Iu.

The so-called labeled players of the game can be distinguished further
based on the strategies they follow without hesitation, coming from their
membership information. In formal terms, I� = {I�|1, . . . , I�|c}, where each
disjoint subset I�|k stands for the set of players always playing their kth
pure strategies. It thus follows from this statement that each player i ∈ I�|k
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plays its extreme mixed strategy ek
i ∈ �i. In other words, xi is constrained to

belong to the minimal face of the simplex �i spanned by {ek
i }. In this regard,

it can be argued that the labeled players do not play the game to maximize
their payoffs since they have already chosen their strategies. In fact, the
transduction game can be easily reduced to a game with only unlabeled
players Iu, where the definite strategies of labeled players I� act as bias
over the choices of unlabeled players.

It is important to note that any instance of the proposed transduction
game will always have a Nash equilibrium in mixed strategies (Nash, 1951).
Recall that for the players, such an equilibrium corresponds to a steady state
such that each player plays a strategy that could yield the highest payoff
when the strategies of the remaining players are kept fixed, and it provides a
globally consistent labeling of the data set. Once an equilibrium is reached,
the label of a data point (player) i is simply given by the strategy with the
highest probability in the equilibrium mixed strategy of player i as

φi = arg max
h=1...c

xih, (4.1)

thereby yielding a crisp classification.

4.1 Payoff Functions. We assume in this letter that the proposed graph
transduction game is an instance of a special subclass of multiplayer games,
known as polymatrix games (Janovskaya, 1968; Howson, 1972), in which
players are nodes of a graph and every edge denotes a two-player game be-
tween corresponding pair of players. In other words, we suppose that only
pairwise interactions are allowed in the game, and the payoffs associated
with each player are additively separable so that the payoff of each player
is given by the sum of the payoffs gained from each game played with one
of its neighbor. Formally, for a pure strategy profile s = (s1, . . . , sn) ∈ S, the
payoff function of every player i ∈ I is in the form

πi(s) =
n∑

j=1

Ai j(si, s j), (4.2)

where Aij is the partial payoff matrix between players i and j. It follows
that in terms of a mixed strategy profile x = (x1, . . . , xn), the payoffs are
computed as ui(e

h
i ) = ∑n

j=1(Ai jx j)h and ui(x) = ∑n
j=1 xT

i Ai jx j.
In an instance of the transduction game, since each labeled player is

restricted to play a definite strategy of its own, all of these fixed choices can
be reflected directly in the payoff function of an unlabeled player i ∈ Iu as
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follows:

ui

(
eh

i

) =
∑
j∈IU

(Ai jx j)h +
c∑

k=1

∑
j∈ID|k

Ai j(h, k), (4.3)

ui(x) =
∑
j∈IU

xT
i Ai jx j +

c∑
k=1

∑
j∈ID|k

xT
i (Ai j)k. (4.4)

What is left is how to specify partial payoff matrices between each pair
of players. For doing so, the binary logical constraints for the toy trans-
duction problem can be simply replaced with their weighted versions. Let
the geometry of the data be modeled with a weighted graph G = (D, E, w)

in which D is the set of nodes representing both labeled and unlabeled
points and w : E → R is a weight function assigning a similarity value to
each edge e ∈ E . Representing the graph with its weighted adjacency matrix
W = (wi j), the partial payoff matrix between two players i and j is set as
Ai j = wi j × Ic, where Ic is the identity matrix of size c. Note that when par-
tial payoff matrices are represented in block form as A = (Ai j), the matrix
A is given by the Kronecker product A = Ic ⊗ W . Notice that in the case
of binary-valued similarity relations, the above partial payoff matrices co-
incide with the compatibility matrices defined for the binary CSP given in
section 2. Further, if only pure strategies are allowed, the transduction game
reduces to the presented CSP. In a pure Nash equilibrium of such a game,
the neighboring players all play the same pure strategy to get the maximum
support from their neighbors. However, when the data contain noise, then
class manifolds may be connected; hence, a pure Nash equilibrium may not
exist, or, in other words, the CSP may be unsatisfiable.

Empirically we observed that specifying payoffs in terms of the normal-
ized similarity matrix Ŵ = D−1/2WD−1/2, with D = (dii) being the diagonal
degree matrix of W whose elements are given by dii = ∑

j wi j, performs
better than the case with the original similarities. In that regard, the use
of normalization is a common practice in graph-based approaches because
it can typically achieve a better performance. To give an example, while
the GFHF method (Zhu et al., 2003) uses original (unnormalized) similari-
ties, the LGC method (Zhou et al., 2004) employs the normalized similarity
matrix in its formulation. Moreover, while not directly related to graph
transduction, it has been shown that the use of normalization has nice
convergence properties in spectral clustering (von Luxburg, Bousquet &
Belkin, 2004). In terms of game theory, however, both versions of the trans-
duction game (with and without normalizing input similarities) belong to
the so-called class of normalized games—thoes with payoffs in a unit-length
interval (Daskalakis, 2011)—but the gap in their classification performance
requires further investigation.
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4.2 Computing Nash Equilibria. There has been growing interest in
the computational aspects of Nash equilibria. The general problem of com-
puting a Nash equilibrium is shown to belong to the complexity class
PPAD-complete, a newly defined subclass of NP (Daskalakis, Goldberg,
& Papadimitriou, 2009; Daskalakis, 2011). Nevertheless, there are many
refinements and extensions of Nash equilibria that can be computed effi-
ciently, and, moreover, the former result does not apply to certain classes of
games (Nisan, Roughgarden, Tardos, & Vazirani, 2007). This letter uses the
well-established evolutionary approach (Weibull, 1995; Hofbauer & Sigmund,
1998), initiated by, Maynard Smith (1982) to find a Nash equilibrium in a
multiplayer game, but we mention that other options do exist, such as the
simplicial subdivision method (van der Laan, Talman, & van der Heyden,
1987), continuation methods (Govindan & Wilson, 2003), and enumeration-
of-support methods (Mangasarian, 1964; Dickhaut & Kaplan, 1991; Porter,
Nudelman, & Shoham, 2008).

The dynamic interpretation of Nash equilibria through the evolutionary
approach imagines that the game is played repeatedly, generation after
generation, during which a selection process acts on the multipopulation
of strategies, thereby resulting in the evolution of the fittest strategies. The
selection dynamics is commonly modeled by the following set of ordinary
differential equations:

ẋih = gih(x)xih, (4.5)

where a dot signifies derivative with respect to time and g(x) =
(g1(x), . . . , gn(x)) is the growth rate function with open domain contain-
ing � = ×i∈I�i, each component gi(x) being a vector-valued growth rate
function for player i. Hence, gih specifies the growth rate at which player i’s
pure strategy h replicates. It is generally required that the function g be reg-
ular (Weibull, 1995), that is, g is Lipschitz continuous, and gi(x) · xi = 0 for
all x ∈ � and players i ∈ I. While the first condition guarantees that system
4.5 has a unique solution through every initial state, condition gi(x) · xi = 0
ensures that the simplex �i is invariant under equation 4.5.

The class of regular selection dynamics includes a wide subclass known
as payoff monotonic dynamics, in which the ratio of strategies with a higher
payoff increases at a higher rate. Formally, a regular selection dynamics,
equation 4.5, is said to be payoff monotonic if

ui

(
eh

i , x−i

)
> ui

(
ek

i , x−i

) ⇔ gih(x) > gik(x) (4.6)

for all x ∈ �, i ∈ I and pure strategies h, k ∈ Si.
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A particular subclass of payoff monotonic dynamics, which is used to
model the evolution of behavior by imitation processes, is given by

ẋih = xih

[ ∑
l∈Si

xil

(
φi

[
ui

(
eh

i − el
i, x−i

)] − φi

[
ui

(
el

i − eh
i , x−i

)])]
, (4.7)

where φi(ui) is a strictly increasing function of ui. The multipopulation
version of the replicator dynamics is obtained when φi is taken as the
identity function, that is, φi(ui) = ui, as

ẋih = xih

(
ui(e

h
i , x−i) − ui(x)

)
. (4.8)

The following theorem states that the fixed points of equation 4.8 are
Nash equilibria:

Theorem 1. A point x ∈ � is the limit of a trajectory of equation 4.8 starting
from the interior of � if and only if x is a Nash equilibrium. Further, if point x ∈ �

is a strict Nash equilibrium, then it is asymptotically stable, additionally implying
that the trajectories starting from all nearby states converge to x.

Proof See Weibull (1995).

In the experiments, the discrete-time counterpart of equation 4.8 given
below is utilized, where the mixed strategies of each unlabeled player are
initialized to uniform probabilities, the barycenter of the simplex �i:

xih(t + 1) = xih(t)
ui

(
eh

i

)
ui(x(t))

. (4.9)

The discrete-time replicator dynamics, equation 4.9, has essentially the
same dynamical properties as the continuous version (see, e.g., Pellilo, 1997,
for a detailed analysis).

4.3 Computational Complexity. The computational complexity of find-
ing a Nash equilibrium of a transduction game using equation 4.9 can be
given by O(kcn2), where n is the number of players (data points), c is the
number of pure strategies (classes), and k is the number of iterations needed
to converge. In theory, it is difficult to predict the number of required it-
erations, but experimentally, we noticed that it typically grows linearly on
the number of data points.1 Note that the complexity of popular graph

1In the case of asymmetric similarities, we have no Lyapunov function for the dy-
namics, so convergence is not guaranteed. However, if the dynamics converges to a fixed
point, it will definitely be a Nash equilibrium (see theorem 1).
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transduction methods is also close to O(n3). It is of interest that for two-
player games, a fast evolutionary game dynamics has been proposed re-
cently, which exhibits linear space and time complexity per iteration (Rota
Bulò & Bomze, 2011). One can use this kind of dynamics to increase the
efficiency of proposed approach.

5 Connection to Graph-Based Approaches

Contrary to our derivation, the vast majority of graph-based SSL studies
start with writing down an objective function that casts the transductive
learning problem as an energy minimization problem and most of the focus
is on how to compute the optima of the corresponding objective function.
In general, all of these methods attempt to estimate an optimal classification
function, which is defined on the nodes of the graph by minimizing an ob-
jective function with two terms. One term penalizes the mismatch between
the initial label assignments and the labels estimated by the classifier. The
second term is a regularization term that enforces the smoothness of the
classification function. Although the game-theoretic perspective shifts the
focus from optima of objective functions to equilibria of the noncoopera-
tive games, in this section, we shed some light on the connection between
the proposed transduction game to the energy-based graph transduction
methods. It is important to note that this analysis investigates only a special
case in which the pairwise similarities are assumed to be symmetric and
follows from the following property of polymatrix games.

Consider a polymatrix game with A = (Ai j) being the block matrix rep-
resentation of partial payoff matrices between players; the average payoff
for the whole population can be defined as

E(x) =
n∑

i=1

xT
i

⎛⎝ n∑
j=1

Ai jx j

⎞⎠ = xTAx. (5.1)

The following proposition establishes a link between local maximizers
of xT Ax in � and Nash equilibria of polymatrix games with symmetric
payoff matrices:

Proposition 1. Suppose A is symmetric, that is, Ai j = Aji for all i, j ∈ I. Then
any local maximum x∗ ∈ � of equation 5.1 is a Nash equilibrium point of the
polymatrix game (Hummel & Zucker, 1983; Miller & Zucker, 1991).2

2This does not hold for the asymmetric case because xT Ax is not a Lyapunov function
for the dynamics.
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Now consider a special instance of the proposed transduction game
where the given pairwise similarities are symmetric: wi j = w ji, ∀i, j ∈ D.
Recall that graph transduction games belong to the family of polymatrix
games, and its partial payoff matrices are all in the form Ai j = wi j × Ic. To
compute Nash equilibria of a transduction game with symmetric similari-
ties, one can use proposition 1 and come up with the following constrained
quadratic optimization problem by considering the special form of the par-
tial payoff matrices:

maximize E (X) = tr{XTWX}
subject to xi ∈ �i ∀i ∈ IU (5.2)

xi = ek
i ∀i ∈ ID|k,

where X = [x1 · · · xn]T is the n × c matrix of mixed strategies. Clearly, there is
no guarantee that the solution found by the replicator dynamics equation 4.9
will be a global maximizer of equation 5.2. However, it was experimentally
shown that on a related problem, the basins of attraction of optimal or near-
optimal solutions are quite large and the dynamics often converges to one of
them (Pelillo, 1999; Pelillo, Siddiqi, & Zucker, 1999). Moreover, it should be
noted that although globally optimal solutions are favorable because they
yield the largest consistency, unlike standard approaches, in our game-
theoretic interpretation, local optima have a meaningful interpretation and
do indeed correspond to solutions of our problem, that is, Nash equilibria
of the transduction game.

For the special case above, we can now investigate its relation to energy-
based formulations. To begin, the functional in the above problem resembles
the continuous relaxation of the k-way normalized cut criterion (Yu & Shi,
2003). However, note that there is a key difference in the game-theoretic
formulation in that each mixed strategy xi is constrained to lie in the c-
dimensional standard simplex �i. This subtle difference is very important
since it provides robustness against noise and outliers (Pavan & Pelillo,
2007). Moreover, unlike the proposed approach, hard labeling constraints
cannot be embedded into the normalized cuts framework in an explicit way,
such that partial grouping constraints could be enforced by introducing
extra linear equality constraints (Eriksson, Olsson, & Kahl, 2007; Xu, Li, &
Schuurmans, 2009; Yu & Shi, 2004). The framework suggested recently in
Ghanem and Ahuja (2010) is an exception, but it is inherently a two-class
clustering approach and requires a recursive strategy to solve multiclass
problems.

In section 4.1, we defined partial payoff matrices for the graph trans-
duction game as A = Ic ⊗ Ŵ , where Ŵ = D−1/2WD−1/2 is the normalized
similarity matrix. Suppose instead that they were specified as A = Ic ⊗ −L,
where L = D − W is the unnormalized graph Laplacian. Then the resulting
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optimization problem becomes.

minimize E (X) = tr{XTLX}
subject to xi ∈ �i ∀i ∈ IU (5.3)

xi = ek
i ∀i ∈ ID|k.

The above optimization problem is in fact equivalent to that of the graph
Laplacian regularization used in Zhu et al. (2003), which is known to be a
special case of the regularization in Zhou et al. (2004) with the parameter
μ = ∞ and the graph Laplacian being unnormalized. In this way, one can
argue that the method in Zhu et al. (2003) solves a special case of transduc-
tion games in which the pairwise similarities are symmetric and the partial
payoffs are specified in terms of negative graph Laplacian.

6 Experimental Results

In this section, we analyze the performance and effectiveness of the pro-
posed approach on some real-world classification problems. To highlight
the property that the game-theoretic formulation can naturally deal with
symmetric, asymmetric, and negative similarity relations alike, three groups
of experiments are carried out. In each group of experiments, we compare
our results against state-of-the-art graph-based semisupervised learning al-
gorithms and have obtained reasonably good results. It is important to note
that none of the considered graph transduction methods can cope with all
three types of similarities.

6.1 Experiments with Symmetric Similarities. In this section, experi-
ments are conducted on four real-world data sets: USPS,3 YaleB (Georghi-
ades, Belhumeur, & Kriegman, 2001), Scene (Oliva & Torralba, 2001), and
20-news.4 Here are some details:

� USPS contains images of handwritten digits 0 to 9 downsampled to
16 × 16 pixels, and it has 7291 training and 2007 test examples. As in
Zhou et al. (2004), only the digits 1 to 4 from the training and test sets
are selected, which gives a total of 3874 data points.

� YaleB is composed of face images of 10 subjects captured under vary-
ing poses and illumination conditions. As in Breitenbach and Grudic
(2005), each image is downsampled to 30 × 40 pixels, and a subset
of 1755 images is considered, which corresponds to the images of
individuals 2, 5, and 8.

3http://www-stat.stanford.edu/∼tibs/ElemStatLearn/.
4http://people.csail.mit.edu/jrennie/20newsgroups/.
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Table 2: Data Sets Used in the Experiments with Symmetric Similarities.

USPS YaleB Scene 20-news

Number of objects 3874 1755 2688 3970
Number of dimensions 256 1200 512 8014
Number of classes 4 3 8 4

� Scene is a scene classification data set consisting of 2688 natural scene
images classified into one of eight classes. Each image is represented
with a 512-dimensional GIST descriptor (Oliva & Torralba, 2001),
which combines the outputs of Gabor-like filters specifically designed
to capture the structural properties of a scene.

� 20-news is the text classification data set used in Zhou et al. (2004),
which contains 3970 news group articles selected from the 20-news
groups data set, all belonging to the topic rec, which is composed
of the subjects autos, motorcycles, sport.baseball, and sport.hockey.
As Zhou et al. (2004) describes, each article is represented in 8014-
dimensional space based on the TFIDF representation scheme.

Table 2 shows a summary of the data sets. For USPS and YaleB, each
image pixel is treated as a single feature; thus, each example is represented
in 256- and 1200-dimensional space, respectively. The similarity between
two examples di and dj is computed using the gaussian kernel as wi j =
exp(− dist(di,d j )

2

2σ 2 ), where dist(di, d j) is the distance between di and dj and σ is
the kernel width parameter. Among several choices for the distance measure
dist(·), the Euclidean distance ‖di − d j‖ is evaluated for USPS, YaleB, and

Scene, and the cosine distance dist(di, d j) = 1 − 〈di,d j〉
‖di‖‖d j‖

is evaluated for 20-
news.

In the experiments, the proposed approach (denoted here with GTG) is
compared against four well-known graph-based SSL algorithms: the spec-
tral graph transducer (SGT; Joachims, 2003),5 the gaussian fields and har-
monic functions–based method (GFHF; Zhu et al., 2003),6 the local and
global consistency method (LGC; Zhou et al., 2004),7 and Laplacian regu-
larized least squares (LapRLS; Belkin, Niyogi, & Sindhwani, 2006).8

5The optimal value of the parameter c is selected as the one with the best mean
performance from the set {400, 800, 1600, 3200, 6400, 12800}.

6In obtaining the hard labels, the class mass normalization step is employed as sug-
gested in Zhu et al. (2003).

7As in Zhou et al. (2004), the parameter α is set as 0.99.
8The optimal values of the extrinsic and intrinsic regularization parameters γA and γI

are selected from the set {10−6, 10−4, 10−2, 1} for the best mean performance.
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YaleBUSPS

Scene 20-news

Figure 2: Performance comparisons on classification problems with symmetric
similarities.

A crucial factor in the success of graph-based algorithms is the construc-
tion of the input graph as it represents the data manifold. As a result, graph
construction for classification has become a subject of interest in recent
years (Jebara et al., 2009), but the problem is still open. To be fair in the
evaluation, for all the methods, a fixed set of kernel widths is used, and
nine 20-NN graphs are generated by setting wi j = 0 if xj is not among the
20 nearest neighbors of xi. In particular, the kernel width σ ranges over the
set linspace(0.1r, r, 5) ∪ linspace(r, 10r, 5) with r being the average distance
from each example to its twentieth nearest neighbor and linspace(a, b, n)

denoting the set of n linearly spaced numbers between and including a
and b.

Figure 2 shows the mean test error rates and one-standard-deviation
error bars over 100 trials with different sizes of labeled data.9 The LapRLS

9We randomly select labeled samples such that each set contains at least one sample
from each class.
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Table 3: Data Sets Used in the Classification Experiments with Asymmetric
Similarities.

SCOP Cora Citeseer Cornell Texas Washington Wisconsin

Number of objects 451 2708 3312 827 814 1166 1210
Number of classes 5 7 6 2 2 2 2

method gives the best results for the relatively small data sets, YaleB and
Scene. However, for the other two, its performance is poor. In general, the
proposed GTG algorithm is either the best or the second best-algorithm.
Although its success is almost identical to that of the LGC method in USPS,
Yale-B, and Scene, it gives superior results for 20-news.

6.2 Experiments with Asymmetric Similarities. In this section, several
experiments are carried out on a real-world protein data set derived from
SCOP (structural classification of proteins; Murzin, Brenner, Hubbard, &
Chothia, 1995),10 and three document data sets: Cora, Citeseer (Sen et al.,
2008),11 and WebKB.12 The details of these data sets are given below:

� SCOP contains 7329 proteins, which are hierarchically divided into
seven classes based on structural and evolutionary relationships. Each
class is divided into folds, and each fold is further divided into su-
perfamilies. Similar to the setup in Meila and Pentney (2007), only the
proteins from the five largest folds of the all alpha class are selected,
which give a total of 451 protein sequences to be classified by fold.

� Cora contains 2708 machine learning publications classified into seven
classes, for a total 5429 citations.

� Citeseer consists of 3312 scientific publications, each of which belongs
to one of six classes, for a total of 4732 links.

� WebKB contains Web pages collected from the computer science
departments of four universities (Cornell, Texas, Washington, and
Wisconsin), and each is classified into seven categories. Following the
setup in Zhou, Huang, and Schölkopf, (2005), here we concentrate on
classifying student pages from the others. Each subset respectively
contains 827, 814, 1166, and 1210 Web pages and 1626, 1480, 2218, and
3200 links.

The data sets are summarized in Table 3. For SCOP, E-values of the
PSI-BLAST search calculated by Weston, Elisseeff, Zhou, Leslie, and Noble

10Version 1.59 with less than 95% identity.
11Cora and Citeseer are available at http://www.cs.umd.edu/projects/linqs/projects/

lbc/.
12Available at http://www.nec-labs.com/∼zsh/files/link-fact-data.zip.
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(2004) are considered as the dissimilarity scores.13 These dissimilarity values
are not symmetric. Instead of constructing NN graphs, this time we use the
full similarity matrices where the kernel width σ was optimized for each
method with respect to the set linspace(0.5, 2.5, 5) ∪ linspace(5, 20, 4) ∪ 40.
For Cora, Citeseer, and WebKB, as in Zhou et al. (2005), only the citation/link
structure is considered, even though one can also assign some weights by
utilizing the textual content of the documents. Specifically, the experiments
are performed on the link matrix W = (wi j), where wi j = 1 if document i
cites document j and wi j = 0 otherwise.

Unlike the proposed game-theoretic approach, the standard methods of
SGT, GFHF, LGC, and LapRLS are subject to symmetric similarities. Hence,
in this context, they can be applied only after rendering the similarities
symmetric, but this could result in loss of relevant information in some
cases. In the evaluation, only the graph-based methods that can directly
deal with asymmetric similarities are considered. Specifically, the proposed
game-theoretic approach is compared against our implementation of the
method in Zhou et al. (2005), denoted here with LLUD. This algorithm is
based on the notion of random walks on directed graphs, and it is equiva-
lent to LGC in the case of symmetric similarities. However, it assumes the
input similarity graph to be strongly connected, so Zhou et al. (2005) con-
sider the teleporting random walk (trw) transition matrix as input, which
is given by Pη = ηP + (1 − η)Pu, where P = D−1W and Pu is the uniform
transition matrix. This suggests a second variant for our framework, de-
noted with GTGtrw, where payoffs are defined in terms of this transition
matrix. In the experiments, we fix η = 0.99 for both LLUD and GTGtrw. To
provide a baseline, we also report the results of our approach that works
on the symmetrized similarity matrices, denoted with GTGsym. For that
case, we used the transformation W̃ = 0.5 × (W + WT ) for SCOP and the
symmetrized link matrix W̃ = (w̃i j) for the others, where w̃i j = 1 if either
document i cites document j or vice versa, and w̃i j = 0 otherwise.

The test errors averaged over 100 trials are shown in Figure 3. Recall that
the replicator dynamics used to find a Nash equilibrium is not guaranteed
to converge in the case of asymmetric similarities. In fact, GTG succeeded
in finding a solution only on SCOP and failed on the others. However, we
did not face any convergence problem with GTGtrw. Hence, we suspect
that this might be related to the high sparseness of the data. Notice that the
performances of GTGtrw and LLUD are quite similar on the classification
problems in the WebKB data sets. On the other hand, GTGtrw is superior
in the multiclass problems in SCOP, Cora, and Citeseer. It is important to
note that symmetrization sometimes can provide good results. As shown

13Available online at http://www.kyb.tuebingen.mpg.de/bs/people/weston/
rankprot/supplement.html.
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SCOP Cora Citeseer

Cornell Texas Washington

Wisconsin

Figure 3: Performance comparisons on classification problems with asymmetric
similarities.

in Figures 3(b) and (c), in Cora and Citeseer, GTGsym performs better than
the other two methods.

6.3 Experiments with Negative Similarities. The game-theoretic for-
mulation can also handle negative similarity or dissimilarity information in
two-class semisupervised classification problems in a natural way. In prac-
tice, such dissimilarity relationships could arise in the computations, or
they can be provided explicitly in terms of a set of cannot-link pairs where
the objects in each pair are expected to be assigned to different classes. The
standard methods cannot accept negative similarities as well, since nega-
tive similarities could make their energy functions negatively unbounded.
However, there are some graph-based SSL methods specifically designed
for dealing with dissimilarity information, that is, the mixed label propa-
gation method (MLP; Tong & Jin, 2007) and manifold regularization with
dissimilarity method (MRWD) (Goldberg, Zhu, & Wright, 2007), which is
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Table 4: Data Sets Used in the Classification Experiments with Negative Simil-
arities.

Ionosphere Diabetes

Number of objects 351 768
Number of dimensions 34 8
Number of classes 2 2

adopted from Belkin et al. (2006).14 In this section, the proposed method is
compared against these two algorithms.

The experiments are performed on two data sets from the UCI
repository:15 Ionosphere and Diabetes. These data sets are described in
Table 4. Notice that the similarities derived from the data sets did not
originally contain any negative values, but we adopted the procedure in
Goldberg et al. (2007) and introduced oracle dissimilarity relations (can-
not links) by randomly sampling pairs of examples having different la-
bels. These pairs do not contain any labeled samples, and to enforce
the maximum degree of dissimilarity, the edge weights were set to the
maximum similarity value existing in the data. In the experiments, the
size of the labeled data is fixed as 50, and the dissimilarity edges are
varied between 3 and 12,800. For all data sets, full similarity matrices
are used, and the kernel width σ is optimized with respect to the set
{0.01} ∪ linspace(0.05, 0.25, 5) ∪ linspace(0.25, 2.5, 10) ∪ {5, 10, 20, 25}.

The average test errors over 10 trials with randomly selected labeled
examples and dissimilarity edges are given in Figure 4. Because the methods
under consideration explore both similarity and dissimilarity information,
their accuracy improves as the size of the dissimilarity edges increases.
Although there is no considerable difference in the performances of the
methods on Diabetes, GTG is clearly more successful on Ionosphere.

Conclusion

This article introduces a novel game-theoretic interpretation to graph trans-
duction in which the problem is formulated in terms of a polymatrix game
whereby any equilibrium coincides with the notion of a consistent label-
ing of the data. As compared to existing approaches, the main advantage
of the proposed framework is that there is no restriction on the pairwise
relationships among data points; similarities, and thus the payoffs, can be

14In the absence of negative similarities, MRWD reduces to LapRLS. In the experi-
ments, we used the regularized least squares (RLS) classifier and selected the optimal
values of the extrinsic and intrinsic regularization parameters as described for LapRLS.

15http://archive.ics.uci.edu/ml/.
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Ionosphere Diabetes

Figure 4: Performance comparisons on classification problems with negative
similarities.

negative or asymmetric. Apart from that, our approach is easy to imple-
ment and can be applied to multiclass problems. The experimental results
show that the game-theoretic approach is not only more general but also
competitive with standard approaches. As future work, we plan to focus
on improving efficiency. In our current implementation, we use the stan-
dard replicator dynamics to reach an equilibrium, but we can study other
selection dynamics that are much faster (Porter et al., 2008; Rota Bulò &
Bomze, 2011). Another possible direction for future research is to generalize
the presented approach to transductive learning in hypergraphs (Agarwal,
Branson, & Belongie, 2006; Zhou, Huang, & Schölkopf, 2007). This will re-
quire replacing the pairwise interactions with higher-order interactions in
defining payoffs, along the lines proposed in Rota Bulò and Pelillo (2009)
for unsupervised learning. In this context, it would be especially interesting
to explore whether different classes of games such as action-graph games
(Jiang, Leyton-Brown, & Bhat, 2011) will be more suitable.
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